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Abstract-The hybrid application of the Laplace transform technique and the finite difference method 
(FDM) to one-dimensional Stefan problems involving the radiative and convective boundary condition is 
studied. The radiative term is linearized by Taylor’s series approximation, and then the above hybrid 
method is used. This scheme is obtained by the use of the Lap&e transfornl technique for the time- 
dependent terms and the fixed-grid FDM for space domain. It can be found from various illustrated 
examples that excellent agreement is obtained between the present results and those of early works. For 
the phase-change problem subjected to the nonlinear boundary condition, three or four iterations are 
required to obtain a convergent result at a specific time. The present analysis also demonstrates that the 
application of the Laplace transform technique is no longer limited to phase-&dnge problems with the 

linear boundary condition. 

INTRODUCTION 

THE TRANSIENT heat conduction problem involving a 

change of phase due to melting or solidification is 
of particular interest in many industriai applications, 
such as in the casting of metals, the freezing of food 

and the making of ice, etc. The analytical solution of 
the phase-change problem is inherently difficult to 
determine because the location of the moving interface 
is not known a priori. However, the study of the 
phase-change problem has become a highly popular 
subject in recent years due to its vast applications in 
the areas of thermal energy storage or metallurgical 
solidification. An extensive review of the methods for 
solving the phase-change problems is given in ref. [I]. 
A few exact solutions of phase-change problems are 

currently available [2, 31. These exact solutions are 
restricted to the problems of heat transfer in a semi- 
infinite region and are subjected to simple boundary 

or initial conditions. For most phase-change 
problems, approximate and numerical methods are 
commonly employed. Approximate solutions are 

practical when great accuracy is not required. Various 
approximate techniques. such as the heat balance inte- 
gral method, the variational method, the perturbation 
method and the series expansion method, have been 

proposed. A brief discussion of these approximate 
methods is given in ref. [ 11. 

Numerical methods are more practical in solving 
the chase-change problem. Based on the choice of the 
dependent variables used in the energy conservation 
equation, the numerical formulations can be classified 
into two main categories. The first formulation is 
regarded as the temperature-based method. In this 

general classical method, the temperature is the depen- 
dent variable and energy conservation equations are 
written respectively for the solid and liquid regions. 
The major difficulty of this formulation is the rep- 
resentation of the discontinujty of the temperature 
gradient at the liquid-solid interface. To overcome 
this difficulty, the second formulation, which uses the 

enthalpy or the apparent heat capacity as a dependent 
variable, is employed. However, the application of the 

enthalpy formulation to the phase-change problem 
often causes a serious numerical instability in the tem- 
perature distribution near the phase-change boundary 
as well as at the position of the boundary itself, 
because an enthalpy discontinuity exists at the 
location of the liquid-solid interface s(t) [4]. The 
present study applies the temperature-based formu- 

lation to analyze the phase-change problem. As was 
mentioned above, the major difficulty of this formu- 
lation is that the temperature gradient at .Y = s(t) 
is discontinuous and s(t) is unknown u priori. 

The present study uses the FDM in space domain 
and the Laplace transform technique for the time- 
dependent terms to analyze the phase-change 
problem. The present solution marches in time. This 
solution at a specific time interval is obtained by 
employing the inputs from the previous time step. In 
the present method, s(t) at a given specific time ti is 
regarded as constant, and then the length s(t) is taken 
at the increased value for the next time interval. In 
other words, s(t) at the previous time step is used to 
determine the new location of the moving interface. 
Successive iteration at a specific time interval is also 
used to correct the inputs from the previous time 
step. This procedure is followed until the boundary 
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NOMENCLATURE 

Bi Biot number. hhik T dimensionless temperature 

11 refercncc length T., dimensionless ambient temperature. O,O, 

(’ specific heat of the material 7 previously iterated temperature 

El, radiation variable, = ha& :/( t dimensionless time, ktih’pc, 

I.r’) global force vector suggested heat flux at the interface 

I1 heat transfer coefficient > space coordinate 

[K] global thermal conductance matrix in the .\’ dimensionless space coordinate, X/h. 

transformed domain 

I\ thermal conductivity 

L latent heat of the material Greek symbols 

I distance between two nodes 1: cmissivity of the material 

I1 total number of nodes 0 temperature 

P Laplace transform parameter (),, ambient temperature 

Q surface heal flux II, environment temperature 

‘I dimensionless surface heat Hux. Qhjktl,,, tL melting temperature 

s location of the solid&iquid interface A parameter to determine the value of s 

St &fan number, (,Orn/ L P density of the material 

.s dimensionless location of the solid-liquid CT Stel’dn-Boltzmann constant 

interface. .y,‘h T time. 

conditions at the interface are satisfied. In this com- 

putational proccdurc. the value of (?T,/?x)], =(,,,,, is 
first assumed to be constant at a given specific ttme 

interval [t,-At,, tJ while solving the phase-change 
problem. Then. s(t,) can be predicted. The above com- 
putations must be performed from / = 0 initially. To 

the best of our knowledge. only Tamma and Railkar 
[5] and Ku and Chan [6] have applied the Laplace 
transform technique to analyze the phase-change 
problem. Tamma and Railkar [5] introduced the 

translinite clement methodology in conjunction with 
the enthalpy formulation for a phase-change problem. 
It can be seen from Fig. I3 in ref. [5] that the prediction 
of s(t) did not agree well with the exact solution. 
Moreover, Tamma and Railkar [5] also did not inves- 
tigate the nonlinear phase-change problem. Ku and 
Ghan [6] proposed a generalized Laplace transform 
tcchniquc to obtain a closed-form solution for lineal 
phase-change problems. Similarly, as stated in their 
work [6], their method also had a severe limitation 
to the nonlinear problems caused by temperature- 
dependent thermal properties or by nonlinear bound- 
ary conditions. 

The one-dimensional phase-change problem in a 
tinite region subjected to radiative and convective 
boundary conditions has been solved by Chung and 
Yeh [7] and Yan and Huang [8]. They respectively 
applied Biot’s variational method and Goodman’s 
integral technique [7] and the regular perturbation 
method [8] to analyze the above problem. In the 
present investigation. the present hybrid method is 
extended to such a problem arising from aerodynamic 
and radiative cooling or heating. Both the tem- 
pcraturc distribution and the location of the moving 
interface are to be determined. As will be seen later. 

the location of the moving interface obtained by the 
present method agrees with that of Chung and Yeh 

]71. 

MATHEMATICAL FORMULATION 

A semi-infinite solid initially at its solidification (or 
melting) temperature T,,, is confined to a half-space 
(X > 0). The governing equation for the temperature 
distribution in the liquid region can be written as 

ix (“0 
/I(’ iT = kTqq. in O<X<S(z), T>O (I) 

where S(r) is the location of the sol&liquid interface. 
At time r = 0, the boundary surface at X = 0 is 

subjected to the following boundary condition and is 
maintained at that condition for 7 > 0 : 

where h is the heat transfer coefficient, Q(r) denotes 
the imposed surface heat flux, g is the Stefan-Boltz- 
mann constant and E is the emissivity of the material. 
For simplicity, both the ambient temperature 0. and 
the environmental temperature 0, are assumed to be 
equal in the present analysis. 

The coupling conditions at the interface X = S(Z) 
are 

0(X. 7) = O,,, at X = S(r). T > 0 (3a) 



-kFx=pLg at X= S(r), 7 >O (3b) 

where L is the latent heat of the fusion. To estimate the location of the moving interface. a 
The initial conditions are simple finite difference approximation is used, i.e. 

0(X,7) = O,, for z = 0, in X> 0 (4a) 
t, < t d t,+At,, 

S(7) = 0 for 7 = 0. (4b) 

We introduce the dimension& variables 
i= 1.2,.... (8) 

Substituting equation (8) into equation (7) yields the 
value of s(t,+ ,) as : 

The value of u is unknown for any time interval 
and is evaluated by iteration. However, once the value 

where h denotes an arbitrary reference length. Insert- of u is determined, the location of the solid-liquid 

ing these dimensionless variables into equations (l)- interFace will be obtained from equation (9). In the 

(4) leads to the following dimensionless differential present study, two different values of u at a specific 

equations : time interval are guessed arbitrarily, and then the 
Secant method is applied to determine a new guessed 

i;T r”T value of U. This computational procedure is rcpcatcd 
- 

(:t i?.u* . 
in 0 < x < s(t), t > 0 (5a) until the boundary conditions at the location of the 

?T 
solid&liquid interface are satisfied. 

_ 
2.u 

= q(t)+Bi(T:,-T) 

+Er(T&T4) at x=0 (5b) 
SOLUTION METHOD 

T(x, t) = 1 at x = s(t), t > 0 (5c) 
The Laplace transforms of equations (5) and (6) 

are respectively 

6 T 1 ds _ ?‘F 

(7.u 
= st dt at .Y = s(t), t > 0 (5d) CT=“t-l O<.u<s(t,) (10) 

T(.u, t) = I and s(t) = 0 for t = 0 (5e) and 

where St is the Stefan number, which signifies the 
importance of sensible heat relative to the latent heat. 

The linearized form of equation (5b) using Taylor’s 
series approximation [9] is 

c?T 
+Er ‘+T:+37-4f’F 1 at x=0 (Ila) 

P _ 
i;r 

= q(t)+Bi(T,-T) 

;T u 

+Er (T:-4F’T+3T4) at .Y = 0 (5f) 

where T denotes the previously iterated temperature. 
A brief illustration of the present hybrid method 

has been described in our previous works [9, IO]. To 

= 
?_x P 

at .Y = s(t,) 

T(.u,p) = I p for .Y = s(t,) 

(1 lb) 

(1 Ic) 

avoid duplication, its computational procedures are where 2, denotes a specific time. 

not presented in the present study. The Laplace transform of a function 4(x, t) is 

In the present study the value of (27’/d~)I._~,, is defined as 

assumed to be constant at a given time interval, i.e. 

’ i;T d%U,P) = emp’ $(.u. t) dt (12) 

ix 
=u in t, < td t,+At,, i= I,2 ,... 

\ _ v,,, 
where p is the Laplace transform parameter. 

(6) The discretized forms of equations (10) and (1 I), 

where t, = 0, At, = t,, , -t, and u is constant at a 
using the central difference approximation, are given 
as 

specific time interval and is determined by iteration. 
Thus the moving boundary velocity, dsjdt, at a specific 
time Interval can be written as : 

ds 
p= St*u. 
dt 
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s(t,+,) =s(t,)+u*St*At (9 

where s(r,) is the location of the moving intcrfacc at 
t = t,. 

i= I ,,,_. 12 (13) 
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+Er 
I 

;/7:+1P:)-JT’f 
1 

( 1421) 

-- ;, (T,, + I ~ ?I! , ) = M at .Y = .\(/,) (l4b) 
r) 

T,;, = ’ (l4c) 
P 

where 1 denotes the distance between two nodes and 
is uniform in the present study. 

The arrangement of equations (13) and (14) gives 
the following vector matrix form as 

where 

[Kl = 

(15) 

( 1621) 

I, and the value of (iT:i.r) I ),/_, arc initially i~zsuniecl. 
whcrc r, = t,+At,. i = I. 7.. Then. an explicil prc- 
diction of .s(t,) can bc obtained from equation (9). 
Furthermore. solving equation (I 5) dctormincs ~hc 
temperature at the interface 7;(.s(r,), I,). A nwly 

guessed value of II is updated by using the Scca~~~ 

method. This single procedure is itcratcd until ~hc 
equality of the boundary condilion ;I[ the nlo~ing 

intcrfbce is satisticd within IO ‘. Thcsc results uill bt: 
applied to produce the predictions of II and .s(/) at the 
next time step. 

ILLUSTRATED EXAMPLES 

In all of the computations, the step sizeb A.\- = 
.~(r,)!lO and A/ = f,: 100 arc used. 

A liquid initially at its melting temperature (I,,, 
(O,,, > 0) is confined to a half-space (.Y > 0). For time 
t > 0. the tcmperaturc of the boundary surface at 
.\- = 0 is kept at a constant tcmpcralurc 0 = 0. The 

exact solutions for the temperature distribution in the 
solid region and the location of the moving interface 
are [3] 

T=,i’= erf (.yC?Jt) 

111 crf (i) 
(17) 

= -:!-p1’-21Ri-8ErlT~ (l6d) .s(/) = ZL,. t (IX) 

(‘, L :! (l6e) where the exact value of i is determined from the 

il, = C’, = I. I = 2.3.. .,2 - I (l6g) 

B,= -2-pl’, i=2,3 . . /r-l (l6h) 

f,= -I-‘. i=2.3 ,._.. ,7-I ( I hi) 

.‘I,, = 2 (l6j) 

B,) = - 2 -p12 (lhk) 

21 
f,, = Ll-Il. (151) 

r) 

In equation (I 5), the thermal conductance matrix 
[K] is an (77 x n) band matrix with complex numbers. 
(7) is an (II x I) vector representing the unknown 

transformed temperatures and the thermal load ( f ) 
is an (77 x I) vector representing the forcing terms. 

In the work of Kubinsky and Cravahlo [I I] for the 
phase-change problem, the temperature distribution 
must be found at time (t,+At,) in order to continue 
the iteration procedure. Since their scheme [I I] is not 
self-starting, the location of the solidWiquid in~crfacc 
at the first time step must bc found by using Neu- 
mann‘s exact solution for a semi-infinite medium. In 
fact. the exact solutions for the phase-change prob- 
Icms are limited to only a few simple cases. As will bc 
seen later, the present study dots not need to perform 
this procedure. In the present method. 21 specific lime 

following transcendental equation : 

,.:nj. c’ erf (7.) = St. (1% 

Table I and Fig. I shob a comparison of i 1.01 

various St values for the exact solution. the prcscnt 
solution, Goodman’s integral solution [I21 and the 
coupled integral solution [l3]. For this problem two 
or three iterations are required to obtain the present 

.s/ 

0.020 
0.082 
0.191 
0.356 
0.592 
0.920 
1.373 
1.996 
2.858 
4.060 
5.155 
8.172 

II.663 
16.776 
24.370 
35.817 

0. I 0.09990 
0.2 0.20225 
0.3 0.30855 
0.4 0.41X.55 
0.5 0.52841 
0.6 0.63550 
0.7 0.73970 
0.X 0.84 I30 
0.9 0.94000 
I .o I .03640 
I.1 I.131 I5 

I .2 I .224x5 

I.3 1.31800 

I .3 I.41 140 

1.5 I .50520 

1.6 I .60055 

/ 

C‘0Llpld 

Integral [I ?J integral [ 131 

0.09999 0.09975 
0.20224 0.20044 
0.30730 1).30191 
0.41528 0.40429 
0.51583 0.50778 
0.63746 0.61 I54 

0.74902 0.7 14x9 

0.X5846 0.X I595 

0.96426 0.9 I295 

I .064X2 I .00371 

I. I5XXO I .0X624 

1.24499 I.15877 

I.32265 I .2x35 

I.39144 I .270x0 

I .45 I39 1.31073 

I .502X6 I.34130 
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FIG. 1. Comparison of 1 for various St values. 

0.6 

T 

-exact E21 

---present 

0 integral Cl21 

0- 2 3 4 5 6 
X 

FIG. 3. The temperature distribution in the solid region at 
various selected times when St = 0.8%. 

solution at each time step. It is seen that the present 
solution agrees with the exact solution. The maximum 
difference of i, is found to be within 6% between the 
analytical solutions and the present solutions. 
However, this difference for i, will be reduced if a 
suitable time step At can be chosen. Further com- 
parison is also made with the numerical results by 
using the method of Murray and Landis [14] for the 
location of the moving interface against time, as 
shown in Fig. 2. Excellent agreement is found between 
the present results and those of Murray and Landis. 
It can also be found that both Goodman’s integral 
solution [IZ] and the coupled integral solution fl3] 
depart from the exact solution for larger St values. 
Figures 3 and 4 show a comparison of the temperature 
distribution in the solid region for various St values 
at various selected times for the exact solution. the 
present solution and Goodman’s integral solution. It 
is seen that the present solution is in good agreement 
with the exact solution over all ranges of the Stefztn 

5- 

3 _ 
02 

027 

01: 

-ii 
G 

0 IC 

OOE 

x exact C23 

* present 

-variable space 
network 

--* fixed space 
network Cl47 

I 
1 I I I I I I I I 

0 100 200 300 400 500 600 700 800 

T&d 

FIG. 2. Comparison between the present results and those of 
ref, [ 141 for the location of the moving interface with time. 

number. However, the difference of the temperature 
distribution between the exact solution and Good- 
man’s integral solution increases with St and f, 
especially near the location of the solid-liquid inter- 
face. 

Example 2 
This example considers the melting of a semi-infi- 

nite bar initially in the solid phase and at its sol- 
idification temperature. The melting starts at t = 0 
due to a dissipated heat flux across the boundary 
.Y = 0. i.e. 

iT 
-;: -c’ at x = 0, t > 0. WV ( .Y 

Furzeland [ 151 has determined the analytical solu- 
tion of this problem for the temperature distribution 
in the liquid region and the location of the moving 

T 

- exact C21 
- - * present 

0 integral [I21 

FIG. 4. The temperature distrjbution in the solid region 
various St vaiues at I = 1. 
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Table 2. Comparison ol‘,c(t) al various selcc~ed times when 
s/ = I 

,x(t) \(J) 

I EWCI [I S] P~WXll Relative WI-or (“!G) 

0. I 0. I 0.1000 0. I 0.0 I996 0.0 I998 0.100 
0.2 0.2 0.7000 0.5 0.(~9903 0.0995 I 0.485 
0.5 0.5 0.4997 0.06 I .o 0.19624 0. I9XO2 0.907 
I .o I .o 0.9966 0.34 I.5 ().?~I 7x 0.29567 I.333 
I.5 I.5 I .4X68 0.X8 2.0 0.3x57x 0.39236 I .?Oh 
3.0 2.0 I .WN I.55 

interface when St = I .O. These results are respectively 
given as follows : 

T(.v. /) = c’ ’ (21) 

and 

.X(f) = t. (22) 

Table 2 shows a comparison of s(t) between the 
exact solutions and the present solutions. The tem- 
peraturc distribution in the liquid region at various 
selected times when St = I is shown in Fig. 5. It can 

be f’ound from Table 2 and Fig. 5 that the present 
hybrid method has good accuracy for linear phasc- 
change problems. 

Example 3 considers the same conditions as Ex- 
ample 2 above, except that the bar is subjected to a 

constant heat flux condition at .Y = 0 as 

iT 
c ~ I a1 .V = 0. t > 0. (23) 

, .\- 

Lozano and Reemtsen [ 161 have presented a closcd- 
form solution of this problem. Their results arc 

applied to test the accuracy of the present method. 
The comparison between their results [I61 and the 
present solutions is shown in Table 3 when Sl = 0.2. 

It can be seen that the prcscnt method can still yield 
considerable accuracy for Example 3. 

“r 

The problem of predicting solidifcation rams has 

been widely used in many fields ranging from frecze- 
drying to metal casting. When the solidification takes 
place at high temperature, such as in the cast of metal 
castings. radiative and convective heat transt”er arc 
both significant mechanisms of cooling at the tixcd 
surroundings. To further show the accuracy of the 
present hybrid method for such problems, a problem 
subjected to the nonlinear boundary condition at 
.v- = 0 is studied. The boundary condition at .v- = 0 
dissipates heat by convection and radiation into a 
medium at I),,. This example is the same as Example 

I, except that the liquid is subjected to the nonlinear 
boundary condition at .Y = 0. Thus the boundary con- 
dition at .Y = 0 can be written as 

iT 
? 
c .Y 

= ~~.(T-T,)+E~.(T?~T,~). (24) 

Three or four iterations are requited to obtain a 

convcrgcnt result at any selected time when the present 
method is applied to solve Example 4. The obtained 
results are shown in Figs. 6 and 7. The temperature 
distribution in the solid region at any selected time fat 
various ET and r, values is shown in Fig. 6 when 
St = Bi = I. Figure 6 shows that the surface tcm- 
pcrature at .I- = 0 gradually decreases with increasing 
time and Er. In the abscncc of an exact solution in the 
existing literature. approximate solutions obtained by 

I-G. 5. The temperature distribution in the liquid region at 
various selected times when Sr = I. 

FiG. 6. The temperature distribution in the solid region at 
various selected times when Bi = I end St = I. IO 
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FIN;. 7. Variation of S(/) with r for various Er values when 
Bi=S/=l. 

Biot’s variational method and the heat balance inte- 
gral technique were found and compared with the 
present solutions. Results shown in Fig. 2 of ref. 173 

arc not plotted in Fig. 6. However, a comparison of 
Fig. 2 in ref. [7] and Fig. 6 shows that the temperature 
history at the radiation and convection surface 
obtained by the present method agrees with that 
predicted by Biot’s variational method when 
Er = St = t = Bi = I. Further comparison is made 
for EV = Bi = t = I and Sr = 10. It can be seen that 

the difference between them will become great for the 
case of St = IO. However. excellent agreement can be 
obtained between the present result and that predicted 
by the heat balance integral method. This discrepancy 
results from the temperature profile chosen in the solid 
region. It is clear that the temperature profile in the 
solid region for Er = Bi = t = 1 and Sf = IO is not a 

linear approximation. Figure 7 shows the variation of 
S(I) with the dimensionless time for various Er values 
when Sr = Bi = 1. The solidification rate can easily 

be evaluated from the slope of the curves shown in 
Fig. 7. In addition. Fig. 7 also shows that the present 
results are in good agreement with those obtained 
by Riot’s variational method. This comparison also 

implies that the present results for s(l) agree with 
those of Goodling and Khader [17] obtained by an 
FDM. The above comparisons show that the appli- 
cation of the Laplace transform technique to such 
problems is no longer limited to phase-change prob- 
lcms subjected to linear boundary conditions. 

CONCLUSIONS 

The present study introduces a new numerical treat- 
ment for one-dimensional phase-change problems. 
Both the temperature distribution in the solid (or 
liquid) region and the location of the moving interface 
are obtained. It is seen from some illustrated examples 
that the present hybrid method has good accuracy 
even for the phase-change probiem with the nonlinear 

boundary condition. For this problem with the non- 

linear boundary condition, Taylor’s series approxi- 

mation must first be used to linearize the radiative 

term. fn the present analysis, the hybrid method is 
applied only to analyze the problem of melting (or 
solidification) in a semi-infinite slab. However, it is 
su%icicntly general for extension to more involved 
phase-change problems. Analysis involving tem- 
perature-dependent properties is underway. A similar 
technique can be used for one-dimensional phase- 
change problems in spheres and cylinders. 
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